#include "translator.h" #include "../hash_data/hash_data.h" #include "../hashmap/hashmap.h" #include "declaration/declaration.h" #include "function/function.h" #include "identifier/identifier.h" #include "number/number.h" #include "string/string.h" #include #include #include #include #include void uint64_to_bytes(uint64_t value, uint8_t bytes[8]) { for (int i = 0; i < 8; i++) { bytes[i] = (value >> (i * 8)) & 0xFF; } } void arena_init(ConstantArena *arena) { arena->data = checked_malloc(CHUNK_SIZE); arena->capacity = CHUNK_SIZE; arena->size = 0; arena->hashmap = createHashmap(); } void arena_resize(ConstantArena *arena, size_t new_size) { size_t new_capacity = ((new_size / CHUNK_SIZE) + 1) * CHUNK_SIZE; if (new_capacity == arena->capacity) return; arena->data = realloc(arena->data, new_capacity); if (!arena->data) { fprintf(stderr, "error: failed to resize arena from %zu to %zu\n", new_capacity, arena->capacity); exit(EXIT_FAILURE); } arena->capacity = new_capacity; } void arena_free(ConstantArena *arena) { free(arena->data); arena->capacity = 0; arena->size = 0; hashmap_free(arena->hashmap, NULL); } void *arena_get(ConstantArena *arena, size_t offset) { return arena->data + offset; } size_t arena_push(ConstantArena *arena, const void *data, size_t length) { uint64_t hash = siphash64_bytes(data, length, siphash_key); // Look up offset in hashmap void *val = hashmap_lookup(arena->hashmap, hash); if (val != NULL) { size_t offset = (size_t)(uintptr_t)val - 1; // stored as pointer but really offset // Verify to avoid collision false positive if (memcmp(arena->data + offset, data, length) == 0) { return offset; } } // Not found: append data arena_resize(arena, arena->size + length); size_t offset = arena->size; memcpy(arena->data + arena->size, data, length); arena->size += length; // Insert into hashmap: store offset as pointer-sized integer hashmap_insert(arena->hashmap, hash, (void *)data, (void *)(uintptr_t)offset + 1, 0); return offset; } Translated init_translator() { Translated translated; translated.registerCount = 0; darray_init(&translated.bytecode, sizeof(uint8_t)); darray_init(&translated.source_locations, sizeof(SourceLocation)); arena_init(&translated.constants); return translated; } size_t push_instruction_byte(Translated *translator, uint8_t byte) { size_t offset = translator->bytecode.size; darray_push(&translator->bytecode, &byte); return offset; } size_t push_instruction_code(Translated *translator, uint64_t code) { size_t offset = translator->bytecode.size; uint8_t bytes[8]; uint64_to_bytes(code, bytes); for (size_t i = 0; i < sizeof(bytes); i++) { darray_push(&translator->bytecode, &(bytes[i])); } return offset; } void set_registers(Translated *translator, uint8_t count) { if (count > translator->registerCount) translator->registerCount = count; } size_t translate_parsed(Translated *translated, ParsedValue *parsedValue) { switch (parsedValue->type) { case AST_STRING: return translate_parsed_string(translated, *((ParsedString *)parsedValue->data)); case AST_DECLARATION: return translate_parsed_declaration(translated, *((DArray *)parsedValue->data)); case AST_NUMBER: return translate_parsed_number(translated, (char *)parsedValue->data, 0); case AST_NULL: set_registers(translated, 1); size_t output = push_instruction_byte(translated, OP_LOAD_NULL); push_instruction_byte(translated, 0); return output; case AST_FUNCTION: return translate_parsed_function(translated, (ParsedFunction *)parsedValue->data); case AST_IDENTIFIER: return translate_parsed_identifier(translated, (ParsedIdentifier *)parsedValue->data); } return 0; } void translate(Translated *translated, DArray *ast) { for (size_t i = 0; i < ast->size; i++) { ParsedValue *parsedValue = darray_get(ast, i); translate_parsed(translated, parsedValue); } } void free_translator(Translated *translated) { darray_free(&translated->bytecode, NULL); darray_free(&translated->source_locations, NULL); arena_free(&translated->constants); }